Redis 是一个基于内存的高性能key-value数据库。
速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
支持丰富数据类型,支持string,list,set,sorted set,hash
1)String
常用命令:set/get/decr/incr/mget等;
应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类;
实现方式:String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。
2)Hash
3)List
常用命令:lpush/rpush/lpop/rpop/lrange等;
应用场景:Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现;
实现方式:Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。
4)Set
常用命令:sadd/spop/smembers/sunion等;
应用场景:Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的;
实现方式:set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。
常用命令:zadd/zrange/zrem/zcard等;
应用场景:Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。
实现方式:Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。
3.支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
4.丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。Redis有部份存在硬盘上,这样能保证数据的持久性。
数据支持类型 Memcache对数据类型支持相对简单。Redis有复杂的数据类型。
使用底层模型不同 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
ZRANGE user_scores 0 10 WITHSCORES
RENAME命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。使用PERSIST命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key 。
server.maxmemory
默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。
使用策略规则:
如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru
如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random
服务器角度,利用setnx实现锁。
注:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redis的setnx命令,但是需要注意一些问题。
1.Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2.Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3.Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
和众多其它数据库一样,Redis作为NoSQL数据库也同样提供了事务机制。在Redis中,MULTI/EXEC/DISCARD/WATCH这四个命令是我们实现事务的基石。相信对有关系型数据库开发经验的开发者而言这一概念并不陌生,即便如此,我们还是会简要的列出Redis中事务的实现特征:
1). 在事务中的所有命令都将会被串行化的顺序执行,事务执行期间,Redis不会再为其它客户端的请求提供任何服务,从而保证了事物中的所有命令被原子的执行。
2). 和关系型数据库中的事务相比,在Redis事务中如果有某一条命令执行失败,其后的命令仍然会被继续执行。
3). 我们可以通过MULTI命令开启一个事务,有关系型数据库开发经验的人可以将其理解为"BEGIN TRANSACTION"语句。在该语句之后执行的命令都将被视为事务之内的操作,最后我们可以通过执行EXEC/DISCARD命令来提交/回滚该事务内的所有操作。这两个Redis命令可被视为等同于关系型数据库中的COMMIT/ROLLBACK语句。
4). 在事务开启之前,如果客户端与服务器之间出现通讯故障并导致网络断开,其后所有待执行的语句都将不会被服务器执行。然而如果网络中断事件是发生在客户端执行EXEC命令之后,那么该事务中的所有命令都会被服务器执行。
5). 当使用Append-Only模式时,Redis会通过调用系统函数write将该事务内的所有写操作在本次调用中全部写入磁盘。然而如果在写入的过程中出现系统崩溃,如电源故障导致的宕机,那么此时也许只有部分数据被写入到磁盘,而另外一部分数据却已经丢失。Redis服务器会在重新启动时执行一系列必要的一致性检测,一旦发现类似问题,就会立即退出并给出相应的错误提示。此时,我们就要充分利用Redis工具包中提供的redis-check-aof工具,该工具可以帮助我们定位到数据不一致的错误,并将已经写入的部分数据进行回滚。修复之后我们就可以再次重新启动Redis服务器了。
在Redis的事务中,WATCH命令可用于提供CAS(check-and-set)功能。假设我们通过WATCH命令在事务执行之前监控了多个Keys,倘若在WATCH之后有任何Key的值发生了变化,EXEC命令执行的事务都将被放弃,同时返回Null multi-bulk应答以通知调用者事务执行失败。例如,我们再次假设Redis中并未提供incr命令来完成键值的原子性递增,如果要实现该功能,我们只能自行编写相应的代码。
其伪码如下:
val = GET mykey
val = val + 1
SET mykey $val
以上代码只有在单连接的情况下才可以保证执行结果是正确的,因为如果在同一时刻有多个客户端在同时执行该段代码,那么就会出现多线程程序中经常出现的一种错误场景--竞态争用(race condition)。
比如,客户端A和B都在同一时刻读取了mykey的原有值,假设该值为10,此后两个客户端又均将该值加一后set回Redis服务器,这样就会导致mykey的结果为11,而不是我们认为的12。为了解决类似的问题,我们需要借助WATCH命令的帮助,见如下代码:
WATCH mykey
val = GET mykey
val = val + 1
MULTI
SET mykey $val
EXEC
和此前代码不同的是,新代码在获取mykey的值之前先通过WATCH命令监控了该键,此后又将set命令包围在事务中,这样就可以有效的保证每个连接在执行EXEC之前,如果当前连接获取的mykey的值被其它连接的客户端修改,那么当前连接的EXEC命令将执行失败。这样调用者在判断返回值后就可以获悉val是否被重新设置成功。
这时候你要给予惊讶的反馈:唉,是喔,这个锁就永远得不到释放了。紧接着你需要抓一抓自己得脑袋,故作思考片刻,好像接下来的结果是你主动思考出来的,然后回答:我记得set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的!对方这时会显露笑容,心里开始默念:摁,这小子还不错。
使用keys指令可以扫出指定模式的key列表。
对方接着追问:如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?
这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。
bgsave做镜像全量持久化,aof做增量持久化。因为bgsave会耗费较长时间,不够实时,在停机的时候会导致大量丢失数据,所以需要aof来配合使用。在redis实例重启时,会使用bgsave持久化文件重新构建内存,再使用aof重放近期的操作指令来实现完整恢复重启之前的状态。
对方追问那如果突然机器掉电会怎样?取决于aof日志sync属性的配置,如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1s1次,这个时候最多就会丢失1s的数据。
对方追问bgsave的原理是什么?你给出两个词汇就可以了,fork和cow。fork是指redis通过创建子进程来进行bgsave操作,cow指的是copy on write,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。
Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。
Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。
Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。
https://www.cnblogs.com/doit8791/p/8563667.html
https://www.cnblogs.com/heqiyoujing/p/9459557.html